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❑ Principle of Bounded Rationality

❑ Conant – 1976

❑ Laws of Information that Govern Performance of Systems

(IEEE SMC)

❑ Intelligent Control – Antsaklis, Saridis

❑ Autonomy and (Machine / Artificial) Intelligence

❑ Autonomy ‘with respect to what’?

❑ Levels of Autonomy

❑ Resiliency – Self Organization – Complex Adaptive Systems

❑ Need for “Metrics” – The Entropy Perspective

❑ Connecting the dots: AI then and now (21st century)

❑ The road ahead.



❑ Level Four – High Automation: 

Autonomous driving system would 

first notify the driver when conditions 

are safe, and only then does the 

driver switch the vehicle into this 

mode. It cannot determine between 

more dynamic driving situations like 

traffic jams or a merge onto the 

highway.

Example - Autonomous Driving Levels

❑ Level Zero - No Automation

❑ Level One – Driver Assistance:

Vehicle may assist with some functions; 

driver still in command

❑ Level Two – Partial Automation: Vehicle 

may assist with steering/acceleration 

functions; allow for the driver to disengage 

from some of their tasks.

❑ Level Three – Conditional Automation: 

Vehicle itself controls all monitoring of the 

environment

❑ Level Five – Complete Automation



Autonomous Driving Levels



DOD ROADMAP – AUTONOMY (Previous)

Unmanned Systems



Challenge of Autonomy (U.S. DoD)



Challenge of Autonomy (U.S. DoD)



US DOD Autonomy Roadmap: 2027-2042

Updated



UAV-UGV Testbed 

• Different types of UGVs and UAVs (helicopters, quadrotors, fixed-wing airplanes) referred to as agents/nodes of
a generic/sparse distributed multi-robot system.

• UGVs may form sub-teams,
may function in loose and/or
dynamically reconfigurable (2-
D) formations, each team
having specific objectives

• UAVs provide the ‘eye-in-the-
sky’ component flying at fixed
or different altitudes (in 2-D or
3-D formations)

• Communication System
between agents made by
ZigBee/Wireless/Bluetooth/R
adio (915 MHz)

UGVs - SUBTEAM 1 UGVs - SUBTEAM 2

HIGH-ALTITUDE 

FIXED-WING UAV 

LOW-ALTITUDE 

ROTARY-WING UAV 

Grant #: 37240A, org. 272901, Notre Dame - DU



Autonomy/AS with Respect to What?
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Human Operator Challenge

Presentation

There is nothing unmanned in a UAS/RPAS

❑ 4-to-1 operators-to-one UAS

(U.S. Air Force)

❑ In the future (as the U.S. Army

wants) 1-to-4



Unmanned Systems 

(UAVs, UGVs, AUVs/ROVs)

Fleet/Team Uncertainty

Individual Vehicle Uncertainty

Component/sub-system uncertainty

Individual Sensor Uncertainty

Individual System Uncertainty

➢ Sample Challenges
➢ Uncertainty

➢ Computational Complexity

➢ Performance Guarantees

➢ Implementation / Testing 

+
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Entropy in Thermodynamics  

S = -k∫x{(ψ-H)/kT} e(ψ-H)/kTdx

S = -k∫Xp(x)lnp(x)dx

Boltzmann (theory of statistical thermodynamics): defined

Entropy, S, of a perfect gas changing states isothermally at

temperature T in terms of Gibbs energy ψ, the total energy of the

system H and Boltzmann’s universal constant k, as

p(x) = e(ψ-H)/kT



Shannon Entropy  

H(X) = - ∑x p(x)logp(x) or H(X) = ∫f(x)lnf(x)dx

Conditional Entropies

HY(X) = - ∑ x, y p(x, y)logp(x/y) = - ∑ y p(y)∑ x p(x/y)logp(x/y) 

Transmission of Information

T(X : Y) = H(X) + H(Y) - H(X, Y) = H(X) - HY(X) = H(Y) – HX(Y) 



Control Systems and Intelligent Machines

❑ Since 1960’s, progress in robotics and automation, despite several challenges and

drawbacks, has produced unparalleled results; technology has, today, matured to

the point of building fully autonomous systems.

❑ High-confidence systems (DARPA perspective)

❑ Efforts to develop a theory of intelligent machines (IMs), build on:

❑ Foundations of classical control (1950’s),

❑ Adaptive and learning control (1960’s),

❑ Self-organizing control (1970’s),

❑ Intelligent control (1980’s).

❑ Integration of concepts/ideas from Science, Engineering and Mathematics

❑ AI

❑ Control Systems

❑ Operations Research



Long-Term Objectives

❑ Central Objective: Assured Autonomy

❑ Progression of automation from the human to the

machine
❑ Transition from human-in-the-loop to human-on-the-loop

❑ Levels of autonomy

❑ End goal: High-confidence systems
❑ Resilient vs robust design (crucial)

❑ Required attributes (not exclusive)

❑ Reasoning, (Re-) Planning, Decision-making, Adaptation

and Learning, Situational Awareness, Self-organization,

Reconfigurability, Fault-tolerance, PHM/IM

❑ The “Tool”: Intelligent Control

❑ Bring under one ensemble and implement, concepts and

ideas from Science, Engineering, Mathematics, OR, Game

Theory, Complexity Theory, Complex Adaptive Systems

❑ Challenge: Metrics to Measure/Evaluate Autonomy

❑ Robust autonomy and robust intelligence

Videos/DU2SRI/Real-time, GPU-based pose estimation of a UAV for autonomous landing - Experimental evaluation.mp4
Videos/DU2SRI/ICRA2015.mp4
Videos/DU2SRI/SID_Yaw_sweep.mp4


Fundamentals, Challenges

❑ Tools and Technology

❑ Control Theory, Adaptive Control, Learning Control, Self-Organizing

Control, Command and Control; C3, C3I, C4I, Intelligent Control

❑ Decision Makers; Bounded Rationality; Hierarchical Multi-level Systems

❑ Intelligent Machines, Intelligent Robotic Systems

❑ AI, Expert Systems, Knowledge-Based Systems; Cognitive Systems

❑ Why not ‘then’, or thus far? – Lack of computational power

❑ Why ‘now’? – Computational power; almost no limit on computational

complexity; understanding of complex system collective behavior;

understanding of event- vs time- based systems; understanding of formal

designs with performance guarantees

❑ (Sample of) Open questions:

❑ How is autonomy / intelligence defined?
❑ How are levels of (robust) autonomy/intelligence defined?

❑ How is uncertainty handled?

❑ How is autonomy/intelligence modeled and evaluated?

❑ Single vs multiple metrics

❑ How are today’s complex systems modeled?

❑ Single, nominal vs family of system models

❑ Unstructured uncertainty



The ‘History’ – Intelligent Control

❑ Foundations of classical control – 1950’s

❑ Adaptive and learning control – 1960’s

❑ Self-organizing control – 1970’s

❑ Intelligent control -1980’s

❑ K. S. Fu (Purdue) - 1970’s coins the term ‘intelligent control’

❑ Alex Levis and his Group: Decision Makers (Info Theory, then

PNs)

❑ G. N. Saridis (Purdue) introduces ‘hierarchically intelligent control

systems’ (PhDs: J. Graham, H. Stephanou, S. Lee)

❑ The 1980’s

❑ J. Albus (NBS, then NIST)

❑ Antsaklis – Passino

❑ Meystel

❑ Ozguner – Acar

❑ Saridis – Valavanis then Lima, Moed, McInroy, Wang

Common theme: multi-level/layer architectures; time-based and

event-based considerations; mathematical approaches

Common limitation: lack of computational power (very crucial)

Videos/DU2SRI/Real-time, GPU-based pose estimation of a UAV for autonomous landing - Experimental evaluation.mp4
Videos/DU2SRI/ICRA2015.mp4
Videos/DU2SRI/SID_Yaw_sweep.mp4


Conant (1976) – The pioneer  



The A. Levis Approach (MIT, GMU) 

• Situation Assessment (SA)
• Information Fusion (IF)
• Task Processing (TP)
• Command Interpretation (CI)
• Response Selection (RS)

Not enough credit given to this group. The first to
use/apply Conant’s Law and use information
theory to determine throughput, coordination,
blockage and noise of I/O information.



… very fast forward, S. Fekri and M. Athans 



Hierarchical Architectures 

Functionality – One Framework
• Modular
• Spatio-temporal
• Explicit human interaction modeling
• Event-based and Time-based
• On-line / Off-line components
• Vertical/horizontal functionality
• Independent of specific methodologies

used for implementation

Antsaklis – Passino (autonomicity)Saridis - Valavanis



Hierarchical Architecture 

Modeling Framework
• Probabilistic
• Fuzzy-Logic Based
• N-Dimensional Information Theory Based

p(k+1/ui) = p(k/ui) + βi+1[ξ-p(t/ui)]

J(k+1/ui) = J(k/ui) + γi+1[Jobs(k+1/ui)-J(k/ui)]



Coordination Level 



Adaptation/Learning (Vachtsevanos et al, 30 years

later….)

𝑠𝑖𝑚(𝐸𝑛𝑡𝑒 , 𝐸𝑛𝑡𝑗) =
σ𝑘=1
𝑛 𝛼 × 𝑠𝑖𝑚 𝐸𝑙𝑖,𝑘 , 𝐸𝑙𝑙,𝑘 + σ𝑘=1

𝑛 𝑛𝑘𝑖,𝑝𝑟𝑒𝑑 × 𝑛𝑖,𝑝𝑒𝑟𝑡 × 𝑠𝑖𝑚 𝐸𝑙𝑖,𝑘 , 𝐸𝑙𝑙,𝑘

𝛼 × 𝑛 + σ𝑘=1
𝑛 𝑛𝑘𝑖,𝑝𝑟𝑒𝑑 × 𝑛𝑖,𝑝𝑒𝑟𝑡

Ente is a new case, Entj represents previous cases;
Eli is a feature; ni,pert is a pertinence weighted
variable associated with the description element Eli;
ni,pred is a predictive weighted variable associated
with each case in memory, which is increased as the
corresponding element (feature) is favorably
selecting a case, and decreased as this selection
leads to a failure; 𝛼 is an adjustable parameter.
Incremental learning will occur whenever a new
case is processed, and its results are identified.

Incremental learning will be pursued using Q-Learning, a popular reinforcement learning scheme
for agents learning to behave in a game-like environment. Q-Learning is highly adaptive for on-line
learning since it can easily incorporate new data as part of its stored database.

Advantage: COMPUTATIONAL POWER!!!



Adaptation/Learning (GaTech, Vachtsevanos, et al)

Q(s, a) will be first initialized (with 0’s or random values) for all states s  S and for all

actions a  A(s); then, for each case s will be initialized, and for each step in a case a will be

chosen from s using a policy derived from Q. Then, action a will be taken and the resultant

state s' and the reward r will be observed. The next step will be to evaluate/update Q(s, a) 

Q(s, a) + a[r + g max a' Q(s', a') - Q(s, a)], followed by updating the state (s  s').



…. And 35 years later (2016) 

…35 years later

(Lin–Antsaklis–Valavanis– Rutherford)

Advantage:

COMPUTATIONAL

POWER!!!



Why Entropy? 

• Duality of the concept of Entropy
• Measure of uncertainty as defined in Information Theory (Shannon).

Measures throughput, blockage, internal decision making,
coordination, noise, human involvement etc., of data / information
flow in any (unmanned) system. Minimization of uncertainty
corresponds to maximization of autonomy / intelligence.

• Control performance measure, suitable to measure and evaluate
precision of task execution (optimal control, stochastic optimal
control, adaptive control formulations)

• Entropy measure is INVARIANT to transformations – major plus

• Deviation from ‘optimal’ is expressed as cross-Entropy and shows autonomy
robustness / resilience

• Additive properties
• Accounting for event-based and time-based functionality
• Horizontal and vertical measure
• Suitable for component, individual layer, overall system evaluation
• Independent of specific methodologies used for implementation
• One measure fits all!



Metrics to evaluate Autonomy/Intelligence

(Vachtsevanos – Valavanis – Antsaklis)

• Performance and Effectiveness metrics
• Confidence (expressed as reliability measure, probabilistic metric)
• Risk is interpreted via a ‘value at risk level’, which is indicative of not

nominal situation, i.e., fault, failure, etc.
• Trust and trust consensus are evaluated through Entropic measures

indicating precision of execution, deviation from optimal, information
propagation, etc.

• Remaining Useful Life (RUL) of system components, sub-systems
• Probabilistic measure of resilience (PMR) - to quantify the probability

of a given system being resilient to forecasted environmental
conditions, denoting the ratio of integrated real performance over the
targeted one – thus, expressed as Entropy, too

𝐑 𝐓 = ൙
𝟎׬
𝐓
𝐏𝐑 𝐭 𝐝𝐭

𝟎׬
𝐓
𝐏𝐓 𝐭 𝐝𝐭



Entropy for Control 

S = -k∫x{(ψ-H)/kT} e(ψ-H)/kTdx

S = -k∫Xp(x)lnp(x)dx

Boltzmann (theory of statistical thermodynamics): defined

Entropy, S, of a perfect gas changing states isothermally at

temperature T in terms of Gibbs energy ψ, the total energy of the

system H and Boltzmann’s universal constant k, as

p(x) = e(ψ-H)/kT

Saridis’ pioneering work!
Valavanis’ PhD Thesis



Entropy for Control - 2

I = ∫L(x, t)dt

When applying dynamical theory of thermodynamics on the

aggregate of the molecules of a perfect gas, an average Langangian,

I, may be defined to describe the performance over time of the state

x of the gas

S = -k∫x{(ψ-H)/kT}e(ψ-H)/kTdx and I = ∫L(x, t)dt

are equivalent leading to

S = I/T

T is constant temperature of the isothermal process of a perfect gas.



Entropy for control - 3

Objective: Express performance measure of a control problem in

terms of Entropy, i.e.:

Consider the optimal feedback deterministic control problem

with accessible states for an n-dimensional system with state

vector x(t) and u(x, t) the m-dimensional control law.

Then, dx/dt = f(x, u, t), x(to)=xo

and cost function

V(u, xo, to) = ∫L(x, u, t)dt (Integral is defined over [to, T])

An optimal control u*(x, t) minimizes the cost

V(u*; xo, to) = min u ∫L(x, u, t)dt (Integral defined over [to, T])



Entropy for control - 4

Saridis proposed to define the differential Entropy for some u(x, t)

as

H(xo, u(x, t), p(u)) = H(u) = - ∫Ωu∫ Ωx p(xo, u)lnp(xo, u)dxodu
(Integrals are defined over Ωu and Ωx

Found necessary and sufficient conditions to minimize

V(u(x, t), xo, to)

by minimizing the differential Entropy

H(u, p(u))

where p(u) is the worst Entropy density as defined by Jayne’s

Maximum Entropy Principle.



Entropy for control - 5

By selecting the worst-case distribution satisfying Jaynes’

Maximum Entropy Principle, the performance criterion of the

control is associated with the Entropy of selecting a certain control

law.”

Minimization of the differential Entropy results in the optimal

control solution.

Note: The Adaptive Control problem is also formulated

in terms of Entropy.



Intelligence and Robust Intelligence

Entropy Interval = Hmax – Hmin

Kullback-Leibler (K-L) measure of cross-Entropy (1951) and

Kullback’s (1959) minimum directed divergence or minimum

cross-Entropy principle, MinxEnt



Human intervention introduced mathematically via additional

probabilistic constraints,

pi, i=1, 2, 3…, n, ∑pi=1

∑cipi=c

ci’s are weights and c is a bound, which are imposed on

(unconstraint) probability distributions and influence/alter the

Hmax – Hmin interval.

Example: p = (p1, p2…, pn) and q = (q1, q2, …, qn) may be measured (and

evaluated) via the K-L measure D(p:q) =∑piln(pi/qi). For example, when q is the

uniform distribution (indicating maximum uncertainty), then D(p:q) = lnn-H(p)

where H(p) is Shannon’s Entropy.

Intelligence and Robust Intelligence - 2



Intelligence and Robust Intelligence - 3

Under this information theory related approach, which

connects Entropy with the event-based attributes of multi-level

systems, the system starts from a state of maximum

uncertainty and through adaptation and learning, uncertainty

is reduced as a function of accumulated and acquired

knowledge and information over time.



Entropy for control, cont.…

DS = {SO, SC, SE} - SO = {u, ζ, ξ, fCO,
OSint, Y|O|} - SC = {Y|O|, fEC,

CSint, F|C|} 

SE = { F|C|,
ESint, Z|E|} 

DS = {SO, SC, SE} = {u, ζ, ξ, fCO, fEC,
OSint,

CSint,
ESint, Z|E|} 

Augmented input is U = {u, ζ, ξ}, internal variables are Si = { fCO, fEC,
OSint,

CSint,
ESint}

and the output is Z|E|. 

GPLIR considers external and internal noise;

internal control strategies and internal coordination

of the levels and between the levels to execute the

requested mission

GPLIR may be derived for each top-down and

bottom-up function of the organizer

GPLIR is also derived for the coordination and

execution levels.



Entropy for control, cont.…



Entropy for control, cont.…

User commands c - ci, i = 1, 2, 3, … |c|

Classified input commands u, uj, j = 1, 2, 3, … |u|. Note that |c| = |u| = M

ci → ui or ci → uj, i ≠ j

Primitive events e, represented as binary random variable x, {ei → xi}, i = 1, 0,

Plans formulated as sets of primitive events that form activities A, ordered activities OA

and augmented ordered activities OAA

A general learning algorithm of the form p(k+1/ui) = p(k/ui) + βi+1[ξ-p(t/ui)]

βi+1 is a sequence satisfying Dvoketcky’s condition for convergence, ξ is either 1 when J’

= min Jc, or, otherwise 0, and J’ is the actual cost of execution of the plan.

p(k/ui). Thus, J(k+1/ui) = J(k/ui) + γi+1[Jobs(k+1/ui)-J(k/ui)],



Entropy for control, cont.…



Entropy for control, cont.…



Entropy for control, cont.…



Entropy for control, cont.…



Alternatively

Knowledge K = -α – lnp(K), p(K) is the pdf of knowledge, α appropriately chosen constant

p(K) must satisfy Jaynes principle of maximum Entropy p(K) = 𝑒−𝛼−𝑲 , α = ׬ 𝑒−𝑲ds

integral is over the space of knowledge, Ωs.

Knowledge between states Kij=½ wijsisj with w’s serving as state transition coefficients, 0 or 1

Total system knowledge K = ½ ΣiΣj wijsisj form of energy of all underlying events.

Rij = Kij/T, Ri = Ki/T and R = K/T - rate of knowledge R chosen as the main variable of the

system with discrete states, defined over a fixed interval of time T.

R must satisfy the relation (MI):(DB) to (R), MI, defined as the process of analyzing,

organizing and converting data into knowledge – it is the set of rules that operates on a Data Base

(DB) of events/activities to produce flow of knowledge (R)

Prob(MI, DB) = Prob(R) and consequently H(MI/DB)+H(DB)=H(R).



Autonomy for Unmanned Systems 

❑ Autonomy in the context of a RPAS/UAS is the capability of its components

or sub-systems to operate independently from external control.
❑ Spectrum of autonomy from basic automation (mechanistic execution of action or

response to stimuli) to partial autonomy, to flexible autonomy and to fully autonomous

systems able to act independently in dynamic/uncertain environments.

❑ Foundational Framework
❑ Set of goals vs environment uncertainty (to define levels of autonomy)

❑ Integrity Management
❑ Prognostics and Health Management (PHM) / Remaining Useful Life (RUL)

❑ Metrics: Risk; Confidence; Trust and Trust Consensus; Measure of Resilience; Entropic

Measures; Kolmogorov Complexity

❑ Deep Learning; Q-Learning; Convolutional Neural Networks

❑ Supervisory controllers (to ‘translate’ time-based to event-base and vice versa)

❑ Off-line and run-time V&V
System analysis

model

Monte Carlo 

Simulation

Offline V&V

Specifications satisfied?

Specifications

N

Y

Failure simulator

Runtime V&V

Specifications satisfied?

Y

N

Field system 

Implementation



Autonomy for Unmanned Systems 

The NextGen - New Reality for Autonomy - Example

Autonomy will also be
built in a bottom-up way
to accommodate in real-
time unstructured
uncertainties (non
model-based), time-
varying parameters,
imprecise system
models, changing models
depending on
operational regime.



Autonomy for Unmanned Systems 

Functionality of the UAS: “… as if there were a pilot on-
board” - The Human-Machine interface Challenge

AI as a Tool Allows for: 

• Designing effective / efficient HMIs to reduce AVO

workload.

• Automation progression - decision making shifts to

the ‘machine’

• High confidence systems

❑ 4-to-1 operators-to-one UAS (U.S. Air Force)

❑ In the future (as the U.S. Army wants) 1-to-4

❖ Reconfigurable software- programming architectures

❖ Combine hardware, control and software reconfiguration strategies

❖ Design for reconfigurability: the complexity paradigm

❖ Design for self-organization (that includes adaptation and learning)

❖ A confluence of tools/methods from large-scale system theory, complexity theory, 
coordination and control, etc.



On Autonomy–Immediate steps

❖ Choose candidate testbed system (i.e., unmanned vehicle)

❖ Define desired functionality (goals – environment uncertainty) and desired levels

❖ Develop modeling and architectural framework with vertical and horizontal
functionality details

❖ Develop algorithmic and procedural framework, and software architecture, adaptation
and learning, etc.

❖ Define metrics (quantitative)

❖ Start testing the candidate system under different set of goals to be achieved and
under different environment conditions

❖ Evaluate progression of automation and establish the trust level after which the human
allows for the machine to make decisions without interaction with the operator

❖ Change goals and environment and repeat considering
❖ Ability to self-organize

❖ Reconfigure itself

❖ Self-build / update the knowledge base (DCBR) based on similarity from previous experience, etc.

❖ Test resilience

❖ Redesign / modify and retest the system



THANK YOU


