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The Technology Base 

➢ Prognostics &Health Management Technologies

➢ Integrated Vehicle Health Management

➢ Autonomy and Autonomous Systems

➢ Resilient Design & Operation of Aerospace Systems

➢ Safety Assessment and Risk Management

➢ Swarms of Autonomous Systems

➢ TRL 4-6
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Current Infrastructure Needs
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Prognostics - Definitions

• Health-based vs Usage-based Prognosis

• Prognostics vs Trending

• Uncertainty Representation, Propagation and Measurement

• Performance Metrics – Accuracy, Precision and Convergence
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Uncertainty – The Achilles’ Heel of PHM

• Uncertainty representation – the uncertainty tree

• Uncertainty propagation – inherent property of prognosis

• Uncertainty management: Kernel functions (tails of distributions);

Feedback loops for model parameter updating as data is streaming

in



Prognostics and Health Management

• Why Choose This Technology?

– Enable Condition Based Maintenance (CBM) and Asset Management 
Concepts

– Enhance Safety

– Increase Availability and Readiness

– Eliminate False Alarms

– Eliminate Cannot Duplicate (CND) and Retest OK (RTOK)

– Reduce Life Cycle Costs

– Maximize PHM Benefit from Limited Specialized Sensors

– Take Max Advantage of the “Smart” Digital Systems  
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Natural Evolution of Legacy Diagnostic Capabilities Coupled with the

Added Functions, Capabilities, and Benefits offered by New Technologies
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Select and Develop PHM Algorithms
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What do I need in order to apply PHM technologies to an aircraft?

1. Data! Data! Data!

2. Sensors and Sensing Strategies

3. Computing and Communications

4. HUMS Equipment – H/S

5. Algorithms

6. Expert Personnel

7. Acceptance by Management

PHM Technology Needs



• “There is no free lunch”

• Sensors and sensing requirements

• Health and usage monitoring hardware/software

• Communications and computing requirements

• Land-based data warehouses

• Expert personnel for all phases of CBM+/PHM technologies

• Acceptance by management/decision makers/bean counters
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CBM+/PHM – The Cost



Success Criteria for PHM/CBM+

• Goal: Reduce maintenance cost by 30%

• Goal: Improve Reliability, Availability, Maintainability and

Safety of ground facilities and air platforms

• Goal: Reduce time for repair of aircraft by several days.

• Goal: Increase uptime of critical maintenance facilities to 98%

• Goal: Achieve JIT practice in inventoried equipment / supplies

/ spares

• Goal: Optimum utilization of maintenance personnel /

resources – improve productivity by 10%

• Goal: Migrate to CBM+ practices throughout all enterprise

operations
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The 
Data Analytics – Novel PHM Technologies

• Data Pre-processing for improved fault signal to noise ratio –

filtering, blind deconvolution, PCA, etc.

• Feature or Condition Indicator (CI) extraction and selection –

performance metrics

• Novel Deep Learning (DL) methods for feature

extraction/selection and classification/control

• Health Indices



Electronics/Avionics PHM

Failure Mode AnalysisValidation

HALT Test

Feature Model
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Quantify Failure Precursors

Identify Known Failure Modes

Highly Accelerated Life Testing

Identify Prognostic Features

Confirm prognostic approach

Usage Models
Quantify Acceleration Factors

Experiment
Seeded Fault Testing

Data Fusion

Electronic Prognostics

Combine Evidence Sources
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Wiring Faults

It is the Wiring Stupid!!

It is estimated that about 46% of aircraft faults are

attributed to wiring faults/failures



PHM Applications to Rotor Wing Aircraft

• Main transmission gearbox (DARPA Prognosis Program) 

• Oil cooler bearing (ARL)

• Intermediate gearbox (ARL)

• Integrated Vehicle Health Management

• Avionics/Electronics (Army advanced diagnostics)

• Corrosion detection and prediction (AF)

• Blades of an HPC Disk-diagnostics/prognostics (P&W)

• Autonomy and Autonomous Systems

13



• Prevent unscheduled 

maintenance

• Assist pilot in making 

intelligent decisions 

about air-worthiness
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CBM+: Maintenance-Centric

Logistics Support for the Future



Integrity Management: IVHM

Putting the “P” in “PHM”
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F-35 Prognostic Candidates

Landing Gear Strut 

Pressure and Fluid Level
Nose Wheel Stability

Landing Gear and 

Arresting Hook 

Structure fatigue life
Rotary Actuator Wear

Battery

Generator Oil Level 

Hydraulic Filters,    

Pump, and Hydraulic 

Fluid Level

Actuator Leakage 

and Wear

Power and Cooling 

Turbo Machine Life, Oil 

Condition, Oil Servicing 

and Filter Condition

Oxygen 

Generator

Nitrogen 

Generator 

and Filter

Heat 

Exchangers 

Engine
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The On-Board PHM Architecture
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• What are Particle Filters? An application of Bayesian state 

estimation:

– Estimation of the posterior pdf of a state, xk, based on all previous 

measurements, z1:k

• The estimation involves two main steps: Prediction step / Update step

The Particle Filter Framework – A Bayesian 

Estimation Approach to Prognosis

❖ Prognosis: Uncertainty Management

Corrections on TTF estimates

❖ At every time instant to+j, j = 0 … k, the particle filter estimate is updated

considering the new observation zo+j and a long term prediction is generated.

❖ The predicted TTF pdf and its expected value Tk are computed.

❖ Define Cj as the set of corrections that were applied to the TTF estimation,

given the observations until zo+j.
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❖Every particle is associated with a

weight

• Particles, together with their

weights, represent a sampled

version of the PDF.

❖ Particle: Possible realization of the states of a process.

❖We only need to study the

propagation of weights in time!

❖ Steps:

• Predict the “a priori” PDF

parameters, using the model

• Update parameters, given the new

observation
actual state

observation
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Particle Filtering Fault Detection and 

Identification Framework

Seeded Fault Test

Test Results
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• Particle Filter Fault Detection Module

• System: Gear plate of the main transmission of a helicopter

– Accelerometers mounted on its frame.

• Objective: Analyze the growth of a crack in a seeded fault test.

– Normal condition: crack is growing very slowly or not growing at all

– Faulty condition: abrupt change in the growth rate.

FDI Case Study: Cracks in Planetary Carrier Plate
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• FDI Case Study: Cracks in Planetary Carrier Plate
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• Prognosis Case Study: Crack in Planetary Carrier Plate

Initial Prognosis Results: 
(No Ground Truth data available)

Hazard Zone around 4.5”

Final Prognosis Results: 
Several Hazard Thresholds  i.e. 4.1”, 

6.2”, etc.
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• Prognosis Case Study: Crack in Planetary Carrier Plate

 

Feature 
Values 

Estimates of 
Crack Length 
Progression 

Mapping of 
Feature 

Values vs. 
Crack Length 

Baseline PDF 
(Healthy 

conditions) 

Current State 
PDF 

Detection 
Parameters 

Prognosis results (in 
remaining cycles of life) 
for different thresholds 

Fault Detection 
Indicators 

corresponding 
to different 

features and 
operating 
conditions 

User choices  for 
display  (on-line 

selectable) 

Fault 
Identification 

Earliest 
Detection 
Results 

Georgia Institute of Technology Proprietary



Electromechanical Actuator (EMA) 

Anomaly Detection

Actuator Assembly Flap Actuator

Vehicle View

• Avionics flight actuator

• Controls flap and rotor position

• Critical system component

• High reliability required



Case Study: Actuator Fault Modes

Fault Modes Identified

• Stator windings shorts (turn to turn/ turn to ground)/ open faults

• Bearings (friction induced faults), spalling, cracks, etc.

• Resolver winding insulation faults (shorts / open faults)

Brushless Motor Motor BearingResolver Sensor

(w/ Electronics)

Georgia Institute of Technology Proprietary



95% Confidence

CLICK TO PLAY! Anomaly Detected

Anomaly Detection of EMA Winding Fault 

(Simulink Demo)
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The Opportunity 

Condition Based Maintenance (CBM) promises to deliver improved

maintainability and operational availability of military assets while reducing life-

cycle costs

The Challenge 

Prognostics is the Achilles heel of CBM systems - predicting the time to failure of

critical systems/components requires new and innovative methodologies that will

effectively integrate diagnostic results with maintenance scheduling practices

Failure Prognosis

“Prediction is rather difficult particularly when 

it concerns the future”

- Niels Bohr



Failure Progression Timeline
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The Goal is To Detect “State Changes” as Far to the Left As Possible

State Awareness Detection  

Need: To Manage 

Interaction between 

Diagnostics and 

Prognostics
Secondary Damage, 

Catastrophic Failure

Need:  Better models to 

determine failure effects 

across subsystems

Determine effects on 

rest of aircraft

Need:  Understanding of fault to 

failure progression rate 

characteristics

Predicted useful life remaining

System, Component, or Sub-

Component Failure

Develop:  Useful life 

remaining prediction 

models – physics and 

statistical based

Very early incipient 

fault

Proper     

Working 

Order - New

Desire: Advanced Sensors 

and Detection Techniques 

to “see”  incipient fault

Prognostics Diagnostics



Prognosis: A Model-based and Measurements 

Approach

Our Approach:

Utility of a fault model, a feature vs. fault dimension mapping,

streaming data and a particle filtering framework (Bayesian

estimation) for long-term prediction



Fault Tolerant Control

Designing High-Confidence and Reliable 

Dynamic Systems
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Plant
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Process

Production

Controller

Control Architecture - Reconfigurable Control
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Controller
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PHM Module

Prognostic

Routine

Diagnostic
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u yr
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Original Controlled Physical 
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Useful Life Conditions

Amount of Reconfiguration is 

Controlled Indirectly by the 

Supervisor

Prognostics / Diagnostics from 

System Measurements
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The Control Architecture
Optimization Criteria for MPC

Health
vs.

Performance
RUL Related

States
vs.

Tracking

Error

Assumptions

Adaptation parameter 

adjusts cost

ex



Complex Systems (Complexity Theory)

• Complex systems can be

considered “system of

systems” with hierarchical

sets of subsystems or

components

– Overall system behavior

results from the

interaction of subsystems

• Increasing complexity may result in:

– More unpredictable emergent behaviors

– Increasing vulnerability to severe disturbances (failures)



Fleet of Aircraft – the Enterprise Level

• Data acquisition and data analytics from a fleet of aircraft

• Prognostics and Health Management at the fleet level

• Objective: Which assets are ready to fly the next five 

missions?

• Data aggregation from multiple vehicles

• Data fusion at all levels

• Decision making from multiple asset sources

• Uncertainty representation and management



Dynamic Programming

• The optimal path will be evaluated by finding the path with 

maximum total expected reward using the Bellman equation 

in a finite horizon window

– Value function is defined as:

𝑉 𝑠 = max(𝑅 𝑠, 𝑎 + 𝛾෍

𝑠′

𝑇 𝑠′ 𝑠, 𝑎 𝑉(𝑠′))



Reliability and Life Cycle Management

• Reliability analysis tools/methods:

• Data and data mining, modeling tools/methods 

• Prognosis of remaining useful life or time to failure of 

failing systems/components

• First order and higher order reliability methods

• Optimization tools

• Risk assessment and management

➢Probabilistic methods for reliability analysis
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Lifecycle Management- The Main Modules
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Safety Assurance - Lifecycle Management

Objective:

❖Given critical component failure(s), build a system lifecycle

model for optimizing system performance: lifespan,

maintenance cost, safety, etc.

❖ Optimize system design on the basis of safety/reliability

analysis methods

❖ Concepts of envelope protection make use of on-line learning

adaptive neural networks to generate on-line dynamic models

exploited to estimate limits on controller commands.



Safety Assurance – A Probabilistic Design 

Approach

• Define safety margins

• Probability of failure

• First-order safety/reliability analysis

• Risk index

• Risk control

• Risk is quantified in terms of the scenario of events

leading to hazard exposure, the likelihood of the

scenario and a measure of its consequences



Safety Margins

❖ Safety Margins - Safety margins are designed as an automatic

envelope protection system.

❖ The system’s behavioral modes may escape from the stable

region of operation, under severe stress conditions, endangering

its safety and survivability.

❖ Concepts of envelope protection make use of on-line learning

adaptive neural networks to generate on-line dynamic models

exploited to estimate limits on controller commands.



Overall Architecture
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Life Expectancy PrognosticsLife Aging ModelingEngineering System Life Loss Modeling under 

Stressors
Long-term Prognosis
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Potential Benefits

• Provide exactly the functionality needed, exactly when needed

• Optimum life cycle management via tools/methods for modeling,

detection, prediction and fault-tolerant control of critical assets

• An open-ended architecture so that it can be improved, upgraded, and

reconfigured, rather than replaced

• Application domains: autonomous systems, aerospace assets, industrial

and manufacturing processes

A new paradigm in the way we design and operate complex systems



• The need: Data! Data! Data!

• Seeded Fault Testing

• Data Warehousing / Knowledge Bases

• Prognosis-The Achilles’ Heel of CBM/PHM

• The Expanding Customer Base: Maintainer, Field Commander Manager,

Designer

• The Business Case: ROI

Where do we go from here?

• Improved coupling between design, health management and fault-tolerant

control

• The human-system interface

• The uncertainty issue

• Probabilistic design methods

• DESIGN OF FAULT-TOLERANT HIGH-CONFIDENCE SYSTEMS

Concluding Comments


