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Q Putting Everything in Context
Q Historical Perspective — Control System Theory: 1950 - today
d Entropy in Thermodynamics
d Shannon Entropy
Q Information Theory
O MIT: Alex Levis Group
d Decision Makers
Q Principle of Bounded Rationality
d Conant — 1976
Q Laws of Information that Govern Performance of Systems
(IEEE SMC)
d Intelligent Control — Antsaklis, Saridis
d Autonomy and (Machine / Artificial) Intelligence
O Autonomy ‘with respect to what’?
O Levels of Autonomy
O Resiliency — Self Organization — Complex Adaptive Systems
O Need for “Metrics” — The Entropy Perspective
O Connecting the dots: Al then and now (215t century)

O The road ahead.
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Example - Autonomous Driving Levels ')/L

UNMANNED SYSTEMS RESEARCH INSTITUTE

O Level Four — High Automation:
Autonomous driving system would
first notify the driver when conditions

O Level Zero - No Automation are safe, and only then does the

O Level One - Driver Assistance; driver switch the vehicle into this
Vehicle may assist with some functions; mode. It cannot determine between
driver still in command more dynamic driving situations like

O Level Two — Partial Automation: Vehicle traffic jams or a merge onto the
may assist with steering/acceleration highway.

functions; allow for the driver to disengage
from some of their tasks.

O Level Three — Conditional Automation:
Vehicle itself controls all monitoring of the
environment

O Level Five — Complete Automation
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Autonomous Driving Levels

s X oomows 2

Level 1

Driver
Assistance

Everything on

ACC (Braking)
Lane Keeping
Auto Emergency
Braking

Parallel Park Assist

2000

Level 2

Partial
Automation

Feet Off

ACC (Steering)
Lane Changing
Traffic Jam Assist
Overtaking Assist

2013

Level 3

Conditional
Automation

Hands Off

Highway Driving

~ 50mph

Driver Initiated Lane
Change

Automated Valet Park
Traffic Jam Chauffeur

2018
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Level 4

High
Automation

Eyes Off

Highway Driving
~100mph
Automated Lane
Change

Cruising Chauffeur
Free Drive

2024

Level 5

Full
Automation

Mind Off

Robo-taxi
Autonomous Shuttie

All driving conditions

2027-2030
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DOD ROADMAP — AUTONOMY (Previous) i SB'
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Autonomous Control Levels

Fully Autonomous Swarms = 10
Group Strategic Goals f- 9

QUCAR Goal

Distributed Control = 8

Group Tactical Goals = 7

Group Tactical Replan = 6 J-UCAS Goal

Group Coordination = 5
Onboard Route Replan |- 4

Adapt to Failures & Flight Conditions |~ 3
Global Hawk, Shadow,

9 ER/MP, and Fire Scout

Real Time Health/Diagnosis = 2 Q Predator

Pioneer
Remotely Guided = 1

| | | 1 | | 1
1955 1965 1975 1985 1995 2005 2015 2025

TREND IN UA AUTONOMY.

UNIVERSITY
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Challenge of Autonomy (U.S. DOD)

Framework for the Design and Evaluation
of Autonomous Systems

Complex System Trades Space View
whether explicitly made or not, system
level performance trades result from

Coanitive Echelon View
As component agent and roles increase
in autonomy, critical issues shift to
relationships and coordination across
roles and echelons

design choices about where and how
to inject autonomy
Mission Dynamics View [ -
e : Responsibility: Short-Term vs. Long-Term Goals |
Hlss where cognitive functions . - -
gg '0" can assist Perspectives: Local vs, Global Views
% | Impact: Centralized vs. Distributed
t; SECTION I \ Plans: Efficiency vs. Thoroughness
L INITIATION ‘ Fitness: Optimality vs. Resilience
g Plan, including delegation and bounds | A
= VEHICLE i
e | | : d
. IMPLEMENTATION 3 F
J < ’,
Action failures, Lol -
Obsolete portions of plans L
A Variation from n(c))mmal conditions
Mission Complete
TERMINATION

Figure 1-1 Framework for the Design and Evaluation of Autonomous Systems
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Missed Opportunities, Needed Technology Developments
Mission / ,
Commander, Scenario Information/
Executive Assessment & Network
Officer, Intel Understanding Management
% o Analyst,
%; % Support Mission Failure Multi-agent,
=z ©  Staff Planning & Anticipation Communication, Adaptive
© ‘6 \ Decision and Collaboration & Capacity
% Y Making Replanning
o o Section Leader, : _
Team Lead, Team & GN&C ' Fault Detection & Situational
Members -~ Vehicle Health Awareness
Sensors & - Management
Pilot, Sensor Weapons Comrlllmcalons
Operator \ Management
Under-utilized existing capability [ 8 Open technical challenges needing investment

Figure 1-3 Status of Technology Deployment and Remaining Challenges
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US DOD Autonomy Roadmap: 2027-2042
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A
<
@)
S
L
)
b 3

017 iy S 1
NEAR-TERM MID-TERM FAR-TERM
Artificial L Rt Bt (i g — A
el -Private Sector Collaboration -Augmented Reality -Persistent Sensing

Machine Learning

-Cloud Technologies

-Virtual Reality -Highly Autonomous

Increased Efficiency
and Effectivness

-Increased Safety & Efficiency

-Unmanned Tasks, Ops )
-Swarming
-Leader-Follower

Trust

-Tasking Guidance and Validation, Ethical Requirements for Human Decisions

Weaponization

-DoD Strategy Consensus
-LAWS assessment

-Armed Wingman/Teammate

(Human Decision to Engage)

Table 3: Comprehensive Roadmap for Autonomy

Updated
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UAV-UGV Testbed

Different types of UGVs and UAVs (helicopters, quadrotors, fixed-wing airplanes) referred to as agents/nodes of
a generic/sparse distributed multi-robot system.

* UGVs may form sub-teams,

may function in loose and/or

ey dynamlcaIIY reconfigurable (2-

FIXED-WING UAV D) formations, each team
having specific objectives

~~~~~~ * UAVs provide the ‘eye-in-the-

sky’ component flying at fixed
~~~~ N or different altitudes (in 2-D or
ROTARY-WING UAV *+ - )@@ 3-D formations)
- : ¢ Communication System
::' between agents made by
] ZigBee/Wireless/Bluetooth/R

adio (915 MHz)

UGVs - SUBTEAM 1 UGVs - SUBTEAM 2

Grant #: 37240A, org. 272901, Notre Dame - DU %! UNIVERSITYer
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Autonomy/AS with Respect to What?

GPS
Antenna

Dual Radius Flap Design

Plenum Design
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The Overall Concept: IVHM Ceergia
Techj

[mm— - =

Maintenance * De-noising

planning « Filtering
« Missi o : * etc.
planils Decisions @ Sensor Data

* etc.
Remaining Preprocessed + Signal
U f | Lf D t stat|§t|cs
seiul Lire ata + Estimated
« Future parameters
capabilities * etc.
» Component
RUL
* etc.
Diagnosis Features
* Fault status
» System
capabilities
sefc:
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F-35 Prognostic Candidates

Actuator Leakage
and Wear

Engine

Nitrogen
Generator ’
and Filter  [sounorms

Landing Gear and
Arresting Hook
Structure fatigue life

Power and Cooling

UNIVERSITY OF mvm&

UNMANNED SYSTEMS BESEARCH INSTITUTE

Turbo Machine Life, Oil
Condition, Qil Servicing

Heat

Exchangers

and Filter Condition

Generator Oil Level
Hydraulic Filters,
Pump, and Hydraulic
Fluid Level

Battery

Rotary Actuator Wear

Landing Gear Strut
Pressure and Fluid Level

Nose Wheel Stability

Oxygen
Generator

UNIVERSITY
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There is nothing unmanned in a UAS/RPAS

d 4-to-1 operators-to-one UAS
(U.S. Air Force)
a In the future (as the U.S. Army

UNIVERSITY
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Unmanned Systems
(UAVS, UGVs, AUVS/ROVS)

» Sample Challenges

» Uncertainty

» Computational Complexity
» Performance Guarantees
> Implementation / Testing Fleet/Team Uncertainty

UNMANNED SYSTEMS BESEARCH INSTITUTE

Individual System Uncertainty J

Environment Uncertainty +

Individual Vehicle Uncertainty ’

Component/sub-system uncertainty ’

Individual Sensor Uncertainty ’

Uncertainty ‘increases’
Different sources of uncertainty

UNIVERSITY

DENVER




MULTI-LEVEL CONTROL SYSTEM CONFIGURATION -'-

Supervisory controller

blocks
— Long Horizon.
— (Ceast Detat)

A

OL STATION

U l .................... T ........... B N DO / ......

INTELLIGENCE

COORDINATION

Cilo N

‘/

PRE

‘ Trajectory Generator ‘ Intermediate

v
<
2
T ORGANIZATION
I Y Y e &
EXECUTION 2 7 ¥
c
LOW LEVEL v Q 3 i \
CONTROLLERS Short Horizon % g
4 (Most detailed) )
10 COORDINATION <
T
e 9 (1) t-1, t-1 t-1 t
@ a,( )" 5, qy(t-1) dy( )" Sy(t)
[
Field Humany hop,(t) Field Human) hop ()
Operator s3] RobOtR, — ... Operator | RobOtR  [—
Robot R, /je—— RobotR | g——]
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Entropy in Thermodynamics

Boltzmann (theory of statistical thermodynamics): defined
Entropy, S, of a perfect gas changing states isothermally at
temperature T in terms of Gibbs energy w, the total energy of the
system H and Boltzmann’s universal constant k, as

S = -k| {(w-H)/KT} etw-HKTgx
S = -kl p(x)Inp(X)dx

0(x) = e(w-HIKT

UNIVERSITY
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Shannon Entropy

H(X) = - >, p(x)logp(x) or H(X) = [f(x)Inf(x)dx
Conditional Entropies

Hy(X) = -2« y P(X, Y)logp(xly) = - 2., p(Y)2 « P(X/y)logp(x/y)

Transmission of Information

TX 1Y) =H(X) + H(Y) - H(X, Y) = H(X) - H{(X) = H(Y) — Hy(Y)

DENVER



Control Systems and Intelligent Machines

UNMANNED SYSTEMS RESEARCH INSTITUTE

O Since 1960’s, progress in robotics and automation, despite several challenges and
drawbacks, has produced unparalleled results; technology has, today, matured to
the point of building fully autonomous systems.

O High-confidence systems (DARPA perspective)

U Efforts to develop a theory of intelligent machines (IMs), build on:

O Foundations of classical control (1950’s),

O Adaptive and learning control (1960’s),

Q Self-organizing control (1970’s),

O Intelligent control (1980’s).

U Integration of concepts/ideas from Science, Engineering and Mathematics

a Al
O Control Systems
 Operations Research

W! UNIVERSITYo
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Long-Term Objectives

O Central Objective: Assured Autonomy
O Progression of automation from the human to the

machine
O Transition from human-in-the-loop to human-on-the-loop
O Levels of autonomy

O End goal: High-confidence systems
O Resilient vs robust design (crucial)

O Required attributes (not exclusive)

O Reasoning, (Re-) Planning, Decision-making, Adaptation
and Learning, Situational Awareness, Self-organization,
Reconfigurability, Fault-tolerance, PHM/IM

d The “Tool”: Intelligent Control
O Bring under one ensemble and implement, concepts and

Ideas from Science, Engineering, Mathematics, OR, Game
Theory, Complexity Theory, Complex Adaptive Systems
d Challenge: Metrics to Measure/Evaluate Autonomy
0 Robust autonomy and robust intelligence

UNIVERSITY
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Videos/DU2SRI/Real-time, GPU-based pose estimation of a UAV for autonomous landing - Experimental evaluation.mp4
Videos/DU2SRI/ICRA2015.mp4
Videos/DU2SRI/SID_Yaw_sweep.mp4

Fundamentals, Challenges

UNMANNED SYSTEMS BESEARCH INSTITUTE

O Tools and Technology
O Control Theory, Adaptive Control, Learning Control, Self-Organizing
Control, Command and Control; C3, C3I, C%l, Intelligent Control
U Decision Makers; Bounded Rationality; Hierarchical Multi-level Systems
O Intelligent Machines, Intelligent Robotic Systems
O Al, Expert Systems, Knowledge-Based Systems; Cognitive Systems
O Why not ‘then’, or thus far? — Lack of computational power
Q Why ‘now’? — Computational power; almost no limit on computational
complexity; understanding of complex system collective behavior;
understanding of event- vs time- based systems; understanding of formal
designs with performance guarantees
O (Sample of) Open questions:
O How is autonomy / intelligence defined?
0 How are levels of (robust) autonomyl/intelligence defined?
O How is uncertainty handled?
0 How is autonomyl/intelligence modeled and evaluated?
O Single vs multiple metrics
O How are today’s complex systems modeled?

O Single, nominal vs family of system models
0 Unstructured uncertainty

UNIVERSITY
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;& The ‘History’ — Intelligent Control

O Foundations of classical control — 1950’s
O Adaptive and learning control — 1960’s
d Self-organizing control — 1970’s
d Intelligent control -1980’s
O K. S. Fu (Purdue) - 1970’s coins the term ‘intelligent control’
Q Alex Levis and his Group: Decision Makers (Info Theory, then
PNs)
O G. N. Saridis (Purdue) introduces ‘hierarchically intelligent control
systems’ (PhDs: J. Graham, H. Stephanou, S. Lee)
O The 1980’s
Q J. Albus (NBS, then NIST)
O Antsaklis — Passino
QO Meystel
Q Ozguner - Acar
Q Saridis — Valavanis then Lima, Moed, Mcinroy, Wang
Common theme: multi-level/layer architectures; time-based and
event-based considerations; mathematical approaches
Common limitation: lack of computational power (very crucial)

UNIVERSITY
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Videos/DU2SRI/Real-time, GPU-based pose estimation of a UAV for autonomous landing - Experimental evaluation.mp4
Videos/DU2SRI/ICRA2015.mp4
Videos/DU2SRI/SID_Yaw_sweep.mp4

Conant (1976) — The pioneer &%
( ) p SHT
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QUTPUTS TO

INPUTS FROM SYSTEM S
ENVIRONMENT

ENVIRONMENT

H(XlaXZsX3) = H(Xsz) + HX1,X2(X3)
Xl !
O X = H(X,) + Hyx (X;) + Hy, x,(X3)

.
Oﬁ_ﬁ““& | —° H(X) = lim 1 HX@),X(t + 1), X + m — 1))
A e

I

T g,/" X, with units of bits per step [14]. The conditional entropy rate
o Hy (X,) is defined by

Hxl(Xz) = H(Xan) - H(X1)

F = i H(X)) total rate (of “information
=1 flow™),

F = T(E:S,) thruput rate,

F, = Ts(E:S;p) blockage rate,

F, = T(X,:X,:++-:X,) coordination rate,

F, = HS) noise rate,

and with these, the PLIR can be expressed as
F=F +F, +F.+ F, (9b)

UNIVERSITY
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The A. Levis Approach (MIT, GMU)

e Situation Assessment (SA)

¢ I nformat|0n FUSIOﬂ (I F) Not enough credit given to this group. The first to

use/apply Conant’s Law and use information

° 1 theory to determine throughput, coordination,
TaSk PFOCESSI ng (TP) blockage and noise of 1/0 information.

e Command Interpretation (Cl)

 Response Selection (RS)
W! UNIVERSITYor

¥ DENVER



... very fast forward, S. Fekri and M. Athans ==.... %
Y SHI

UNMANNED SYSTEMS RESEARCH INSTITUTE

Process noises Sensor noises
) 8
Controls l I\ Measurements
ulr) vit)
Unknown plant — »
KFs LNARCs
——T—" nif) ' R i, (]
KF #1 e K(s) : -@
—
I 0 [ . 1y (1) uit)
: - »  K.(35) (%
L KR = )
rylf) i U, (1)
| ‘ KF#N — NI ) ‘ A (X)
]
S ¥ Y P
—— Posterior i)
Residual 5., |Probability| /(")
covariances Evaluator | @ _
Sy (PPE) F, (1) Posterior probabilities




Hierarchical Architectures e

UNMANNED SYSTEMS RESEARCH INSTITUTE

Saridis - Valavanis Antsaklis — Passino (autonomicity)

Human Operator
nnnnnnnnnnn ds

E Organization-to-Coordination Interface J Management Level
A
ssssssssss 1 Feedback, fco
coordination level 1
1
~
Coordination Level
| Coordination-to-Execution Interface ‘
A
eeeeeeeeeeeeeee ion | Feedback, fec
and execution plan 1 A
' I
~
Execution Level
T4

l ' Functionality — One Framework * +
@ * Modular Process
* Spatio-temporal
« Explicit human interaction modeling
« Event-based and Time-based
* On-line / Off-line components
* Vertical/horizontal functionality
« Independent of specific methodologies
used for implementation

UNIVERSITY
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Hierarchical Architecture e
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User comman ds, ¢
{u, & &
+ [ Machine Reasoning ]< |
[ Classifier ]< Noise, ¢ " Knowledge Base Update
(DCBR)
Classified input commands, # emmmmmmmmmmemeee---- Human input, & " y
1 ¥ Machine Planning —

>[ Organization, S ]

[ Learning/Adaptation ]

feo Yo Machine Decision E |
- - Making
Coordination, Sint }7

Fi S Yo Jfco (includes fic)
(to the coordination level) (from lower levels)
[ Execution, ESint ]7

" p(k+1/u) = p(k/Uy) + B [E-P(HIL)]

J(k+1/u;) = I(K/Uy) + piq[Jops(k+1/u)-J(K/u)]

Modeling Framework

* Probabilistic

* Fuzzy-Logic Based

* N-Dimensional Information Theory Based

UNIVERSITY
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Coordination Level
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Adaptation/Learning (Vachtsevanos et al, 30 years
later....)

UNMANNED SYSTEMS RESEARCH INSTITUTE

Periodic

Mainigpance Ent, 1S a new case, Entj represents previous cases;
D @ DO El; is a feature; n;,,, is a pertinence weighted
e e e\ —e] ¢ variable associated with the description element El;

n; yreq 18 @ predictive weighted variable associated

: with each case in memory, which is increased as the
1 : corresponding element (feature) is favorably
‘[ ssssss i selecting a case, and .decrease-d as this selection
leads to a failure; a is an adjustable parameter.
Incremental learning will occur whenever a new
case is processed, and its results are identified.

Update =
-
Confirned Solution

Update

REUSE

Proposed Solution
REVISE

Dynamic CBR Architecture
1 Dynamic Case Base

2 Dynamic Case

3 Dynamic Adaptation

n ; n ;
k=1 X Slm(Eli,k: Ell,k) + Zk:l Nk, pred X Nipert X Slm(Eli,k: Ell,k)
n
aXn+ Yy, Nk, pred X Nipert

Incremental learning will be pursued using Q-Learning, a popular reinforcement learning scheme
for agents learning to behave in a game-like environment. Q-Learning is highly adaptive for on-line
learning since it can easily incorporate new data as part of its stored database.

Advantage: COMPUTATIONAL POWER!!!

sim(Ent,, Ent;) =

UNIVERSITY
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Adaptation/Learning (GaTech, Vachtsevanos, et al)

UNMANNED SYSTEMS RESEARCH INSTITUTE

Expected reward. Immediate reward
“cost-to-oa” o .
& Learmng Discount factor
H‘n- -.l--"'l. -I- e
J(s.a) « Q[;_.ﬂ_r] - g[r + ¥ max l!_:_:"I:E'_.-."a'F':I - Q(s,.a)]]

Chrronmt chate  ClivreRbachon Mextsiate MNextachon

Q(s, a) will be first initialized (with 0’s or random values) for all states s € S and for all
actions a € A(S); then, for each case s will be initialized, and for each step in a case a will be
chosen from s using a policy derived from Q. Then, action a will be taken and the resultant
state s' and the reward r will be observed. The next step will be to evaluate/update Q(s, a) «—
Q(s, a) + afr +ymax , Q(s', ') - Q(s, a)], followed by updating the state (s < s').

W! UNIVERSITYo
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...39 years later
(Lin—Antsaklis—Valavanis— Rutherford

Coordination @ ———p  Coordination - Coordination

f G f ! f '

Supervision Supervision Supervision

! o P

1
1
1
1
1
1
1
1
1
: Motion Planning Motion Planning
1
1
1
1
1
L

Motion Planning

f 0

Regulation

f 0 { J

Regulation Regulation

S —

Figure 1: Hybrid hierarchical control architecture for
multi-robot systems. The red arrows between layers rep-
resent the information flow and feedback between layers.
The red arrows between coordination layers of two robots
stand for communication between robots, while the phys-
ical interactions and passive reactions are denoted as ar-
rows between physical robots.

UNIVERSITY OF DENVER
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Advantage:
COMPUTATIONAL
POWER!!!

UNIVERSITY
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* Duality of the concept of Entropy

Measure of uncertainty as defined in Information Theory (Shannon).
Measures throughput, blockage, internal decision making,
coordination, noise, human involvement etc., of data / information
flow in any (unmanned) system. Minimization of uncertainty
corresponds to maximization of autonomy / intelligence.

Control performance measure, suitable to measure and evaluate
precision of task execution (optimal control, stochastic optimal
control, adaptive control formulations)

Entropy measure is INVARIANT to transformations — major plus

Deviation from ‘optimal’ is expressed as cross-Entropy and shows autonomy

robustness / resilience

Additive properties

Accounting for event-based and time-based functionality
Horizontal and vertical measure

Suitable for component, individual layer, overall system evaluation
Independent of specific methodologies used for implementation
One measure fits all!

DENVER

UNIVERSITY



Metrics to  evaluate = Autonomylintelligence .......
(Vachtsevanos - Valavanis — Antsaklis)

UNMANNED SYSTEMS RESEARCH INSTITUTE

« Performance and Effectiveness metrics

« Confidence (expressed as reliability measure, probabilistic metric)

- Risk is interpreted via a ‘value at risk level’, which is indicative of not
nominal situation, i.e., fault, failure, etc.

« Trust and trust consensus are evaluated through Entropic measures
indicating precision of execution, deviation from optimal, information
propagation, etc.

 Remaining Useful Life (RUL) of system components, sub-systems

« Probabilistic measure of resilience (PMR) - to quantify the probability
of a given system being resilient to forecasted environmental
conditions, denoting the ratio of integrated real performance over the
targeted one — thus, expressed as Entropy, too

[} Pr(Dat

R(T) = J) Pr(tdt

UNIVERSITY
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Entropy for Control

Boltzmann (theory of statistical thermodynamics): defined
Entropy, S, of a perfect gas changing states isothermally at
temperature T in terms of Gibbs energy w, the total energy of the
system H and Boltzmann’s universal constant k, as

S = -k| {(w-H)/KT} etw-HKTgx
S = -kl p(x)Inp(X)dx

p(xX) = e(y-H)/KT

Saridis’ pioneering work!

Valavanis’ PhD Thesis
UNIVERSITYo
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Entropy for Control - 2

When applying dynamical theory of thermodynamics on the
aggregate of the molecules of a perfect gas, an average Langangian,
I, may be defined to describe the performance over time of the state
x of the gas

| = JL(x, t)dt
S = -k| {(w-H)/KT}eWw-H/KTdx and | = JL(x, t)dt

are equivalent leading to
S=UT

T i1s constant temperature of the isothermal process of a perfect gas.

DENVER



Entropy for control - 3

Objective: EXpress performance measure of a control problem in
terms of Entropy, i.e.:
Consider the optimal feedback deterministic control problem
with accessible states for an n-dimensional system with state
vector x(t) and u(x, t) the m-dimensional control law.

Then, dx/dt = f(x, u, t), x(t,)=X,
and cost function
V(u, X0 '[O) = jL(x, u, t)dt (Integral is defined over [t,, T])

An optimal control u™(x, t) minimizes the cost

V(u; X,, t,) =min |L(x, u, t)dt (Integral defined over [t,, T])
DENVER



Entropy for control - 4

Saridis proposed to define the differential Entropy for some u(x, t)
as

H(Xo, u(x, 1), p(u)) = H(u) = - [gu ax P(%,, U)INP(X,, U)dx,du

(Integrals are defined over Q, and Q,

Found necessary and sufficient conditions to minimize
V(u(x, 1), X, t)
by minimizing the differential Entropy
H(u, p(u))
where p(u) Is the worst Entropy density as defined by Jayne’s

Maximum Entropy Principle.

UNIVERSITY
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Entropy for control - 5

By selecting the worst-case distribution satisfying Jaynes’
Maximum Entropy Principle, the performance criterion of the
control is associated with the Entropy of selecting a certain control

law.”

Minimization of the differential Entropy results in the optimal
control solution.

Note: The Adaptive Control problem is also formulated
In terms of Entropy.

W! UNIVERSITYo
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Intelligence and Robust Intelligence

Entropy Interval = H, ., — Hi,

Kullback-Leibler (K-L) measure of cross-Entropy (1951) and
Kullback’s (1959) minimum directed divergence or minimum
cross-Entropy principle, MinxEnt

UNIVERSITY
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Intelligence and Robust Intelligence - 2

Human intervention introduced mathematically via additional
probabilistic constraints,

pi, 1=1, 2, 3..., n, > p;=1

2.Cipi=C

c;’s are weights and c is a bound, which are imposed on
(unconstraint) probability distributions and influence/alter the
H. .. — Hqnin INnterval.

Example: p = (py, Py-..» Py) @and q = (g, 9o, ..., ,) May be measured (and
evaluated) via the K-L measure D(p:q) => p;In(p;/q;). For example, when q is the
uniform distribution (indicating maximum uncertainty), then D(p:q) = Inn-H(p)
where H(p) is Shannon’s Entropy.

DENVER



Intelligence and Robust Intelligence - 3

Under this information theory related approach, which
connects Entropy with the event-based attributes of multi-level
systems, the system starts from a state of maximum
uncertainty and through adaptation and learning, uncertainty
IS reduced as a function of accumulated and acquired
knowledge and information over time.

W! UNIVERSITYo
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Entropy for control, cont....

UNMANNED SYSTEMS RESEARCH INSTITUTE

DS = {SO' SC' SE} - SO = {U, 61 51 1:co’ OSint, Y|0|} - SC = {Y|O|’ fEc’ CSint, FICI}

Se ={ Fu ESint, Ze}

DS = {SO' SC' SE} = {U, C' é:' 1:co’ fEc’ OSint, CSint, ESint, Z|E|}

Augmented inputis U = {u, ¢, &}, internal variables are S; = { f, ., St ©Sine ESinet
and the output is Z,.

User commands, ¢

GPLIR considers external and internal noise;
7 internal control strategies and internal coordination
[ = } - of the levels and between the levels to execute the
Classifi Noise, ..
| - ~ requested mission
Classified input commands, 2 pessmmmsmnmncooceos o Human input, €
3 h 4
0} ization, OSint .
. ! i J GPLIR may be derived for each top-down and
' bottom-up function of the organizer
—[ Coordination, Sint ]47 p g
Fi Ji GPLIR is also derived for the coordination and
[ Execution, ESint ]— .
execution levels.
2
(to control proces, 5es)
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l “ser cormmands
c

~o Channel

Classifier b Noise

Compiled input ccrmmands

1 el The total rate of activity of the IRS F is expressed as the
i ' entropy rate of all internal variables:

&N
(g e]

F=YH(S)

I Coorﬁ??fim Si= (Sow Scir Sein Y1, YE, YP)' (15)
Sy

v C

Execution
Level

int

(to control processes)

Fig. 1. Block diagram of intelligent machine.
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User commandsc - ¢;,1=1, 2, 3, ... |c]|

Classified input commands u, u;, ] =1,2,3, ... |u[. Note that|c|=|u]=M

Ci 2> Uorc; > u;, 1 #]

Primitive events e, represented as binary random variable x, {e; €= x},1=1,0,

Plans formulated as sets of primitive events that form activities A, ordered activities °A
and augmented ordered activities A,

A general learning algorithm of the form p(k+1/u;) = p(k/u;) + i, /E-p(t/u;)]

Biq 1S @ sequence satisfying Dvoketcky’s condition for convergence, ¢ is either 1 when J”
= min J., or, otherwise 0, and J" is the actual cost of execution of the plan.

p(k/u;). Thus, J(k+1/u;) = I(k/U;) + 7i41[Jons(kK+1/U;)-I(k/U))],

UNIVERSITY
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The total noise rate throughout the IRS F, represents the
uncertainty that remains in the IRS wvariables when all
external inputs, i.e., the compiled input command and
feedback information are known. It is expressed as

F,=H(Sy, . Y5, Sc, Y. S5, YT/ ) fegn fuc)- (16)

F,=F/+Fp (17)

where

an:H(YP u_,i*fC{)’fEC) (18)

Fp=H(Sy, Y, Sep, YE. Sg, /s feos fres YT). (19)
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The toral throughput rate of the IRS 1s the amount by
which the output of the I[RS is related to its compiled
input command and feedback information. It 1s expressed
as

E:T(“,nfcmf};c: YP) (21)
and it is decomposable into two terms as
F=H(Y")-F,. (22)

UNIVERSITY
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The total blockage rate of the IRS is thought of as the
amount of information in the input to the IRS that 1s not
included in the output. It is expressed as

F,= T( U, fco.» fec: Y Soi» YCA Scis SE:‘/YP) (23)
and it is decomposed further into two terms expressed as
Fb:ﬁ(“yfc“()afﬁc/yp)'FD- (24)

The first term indicates the joint uncertainty about the
compiled input command and related feedback when the
execution level processes are known.

UNIVERSITY

ﬁ! DENVER




Entropy for control, cont....

UNMANNED SYSTEMS RESEARCH INSTITUTE

The total coordination rate of the IRS denotes the trans-
mission of information (knowledge processing) within the
IRS, i.e., the amount by which all of the internal variables
of the IRS constrain each other. It is expressed as

F,=T(S;:Y") (25)

F=F°+ F + FE+T(S,: S¢: Sg). (26)
The last term of (26) is simplified further to give
T(S,: S S.) =T(S,: Sc)+ T(Sy. Sc: Sie)
= A(S.) - H(S,/Sc)
+ﬁ(sﬁ)_ﬁ(sia‘/S07SC) (27)
where
T(S,: Sc) = H(Sc)— H(Sc/S,) (28)
T(Sy.Sc:Sg) = H(Sg) = H(Sg/So- Sc)- (2'9) INIVERS[Tor
€7 DENVER



Alternatively

Knowledge K = -a — Inp(K), p(K) is the pdf of knowledge, a appropriately chosen constant

p(K) must satisfy Jaynes principle of maximum Entropy p(K) = e~ * K  a = [ e Xds
integral is over the space of knowledge, Q..

Knowledge between states K=" w;;s;s; with w’s serving as state transition coefficients, 0 or 1

Total system knowledge K =% %; %; wys;s; form of energy of all underlying events.

R = Ki/T, Ry = K/T and R = K/T - rate of knowledge R chosen as the main variable of the
system with discrete states, defined over a fixed interval of time T.

R must satisfy the relation (MI):(DB) to (R), MI, defined as the process of analyzing,
organizing and converting data into knowledge — it is the set of rules that operates on a Data Base
(DB) of events/activities to produce flow of knowledge (R)

Prob(MI, DB) = Prob(R) and consequently H(MI/DB)+H(DB)=H(R).

©) DENVER
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O Autonomy in the context of a RPAS/UAS is the capability of its components

or sub-systems to operate independently from external control.
O Spectrum of autonomy from basic automation (mechanistic execution of action or
response to stimuli) to partial autonomy, to flexible autonomy and to fully autonomous
systems able to act independently in dynamic/uncertain environments.

U Foundational Framework
Set of goals vs environment uncertainty (to define levels of autonomy)

Integrity Management
U Prognostics and Health Management (PHM) / Remaining Useful Life (RUL)
Metrics: Risk; Confidence; Trust and Trust Consensus; Measure of Resilience; Entropic
Measures; Kolmogorov Complexity
Deep Learning; Q-Learning; Convolutional Neural Networks
Supervisory controllers (to ‘translate’ time-based to event-base and vice versa)
Off-line and run-time V&V

inexpensive
% ‘g:’ 3
S Interactive ka3
Design © e %,
process Anticipate Monitor

Know what to Know what to
Simulation Run-time expect look for

Reactive
System level V&V Safety
Respond
3 Component level = hl Know what to do
V&Y

a
g
a
g
g
g

&S

Expectations
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-—

The NextGen - New Reality for Autonomy - Example

Contracted Isometric

Expanded Configuration

Autonomy will also be
built in a bottom-up way
to accommodate in real-
= time unstructured

H H
¢ H H
r & u .
Controller Nominal plant
Span Change Chord Length Change
?H d I I
u Real plant .

' e [ comtater ™ uncertainties (non
I model-based), time-
Span-wise bending Va ryi ng pa ra m ete rs’

System System . }
Requirements Disturbances Imprecise system
~_ models, changing models

System dependmg on
ATEIIECIIE operational regime.

‘w, Probabilistic

-~ Measure of

Structural & | Resilience
Healing

(PMR)

@
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Functionality of the UAS: “... as if there were a pilot on-
board” The Human Machine interface Challenge

Al as a Tool Allows for:
» Designing effective / efficient HMIs to reduce AVO
workload.
« Automation progression - decision making shifts to
the ‘machine’
 High confidence systems

a 4-to-1  operators-to-one UAS (U.S. Air Force)
d In the future (as the U.S. Army wants) 1-to-4

&

L)

%

Reconfigurable software- programming architectures

/
0’0

Combine hardware, control and software reconfiguration strategies

/
0’0

Design for reconfigurability: the complexity paradigm

/
0’0

Design for self-organization (that includes adaptation and learning)

XS

%

A confluence of tools/methods from large-scale system theory, complexity theory,

@

coordination and control, etc.
UNIVERSITYor
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On Autonomy—-Immediate steps g SBI
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Choose candidate testbed system (i.e., unmanned vehicle)
Define desired functionality (goals — environment uncertainty) and desired levels

Develop modeling and architectural framework with vertical and horizontal
functionality details

Develop algorithmic and procedural framework, and software architecture, adaptation
and learning, etc.

Define metrics (quantitative)

Start testing the candidate system under different set of goals to be achieved and
under different environment conditions

Evaluate progression of automation and establish the trust level after which the human
allows for the machine to make decisions without interaction with the operator

Change goals and environment and repeat considering
Ability to self-organize

3

*¢

)
0.0

Reconfigure itself

)
0.0

Self-build / update the knowledge base (DCBR) based on similarity from previous experience, etc.

@

)
0’0

Test resilience

R/
0‘0

Redesign / modify and retest the system
UNIVERSITYor

DENVER
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